A: Rockville, Maryland, United States
"Seven months after the ceremony at the White House marking the completion of the human genome sequence, highlights from two draft sequences and analyses of the data were published in Science and Nature. Scientists at Celera Genomics and the publicly funded Human Genome Project independently found that humans have approximately 30,000 genes that carry within them the instructions for making the body's diverse collection of proteins.
"The findings cast new doubt on the old paradigm that one gene makes one protein. Rather, it appears that one gene can direct the synthesis of many proteins through mechanisms that include 'alternative splicing.' "It seems to be a matter of five or six proteins, on average, from one gene," said Victor A. McKusick of the Johns Hopkins University School of Medicine, who was a co-author of the Science paper.
"The finding that one gene makes many proteins suggests that biomedical research in the future will rely heavily on an integration of genomics and proteomics, the word coined to describe the study of proteins and their biological interactions. Proteins are markers of the early onset of disease, and are vital to prognosis and treatment; most drugs and other therapeutic agents target proteins. A detailed understanding of proteins and the genes from which they come is the next frontier.
"One of the questions raised by the sequencing of the human genome is this: Whose genome is it anyway? The answer turns out to be that it doesn't really matter. As scientists have long suspected, human beings are all very much alike when it comes to our genes. The paper in Science reported that the DNA of human beings is 99.9 percent alike—a powerful statement about the relatedness of all humankind" (Genome News Network, Genetics and Genomics Timeline 2001, accessed 05-24-2009)
References:
Venter, J.C. et al. "The sequence of the human genome," Science 291, 1304-1351 (February 16, 2001).
Lander, E.S. et al. The Genome International Sequencing Consortium. "Initial sequencing and analysis of the human genome," Nature 409, 860-921 (February 15, 2001).
"An initial rough draft of the human genome was available in June 2000 and by February 2001 a working draft had been completed and published followed by the final sequencing mapping of the human genome on April 14, 2003. Although this was reported to be 99% of the human genome with 99.99% accuracy a major quality assessment of the human genome sequence was published in May 27, 2004 indicating over 92% of sampling exceeded 99.99% accuracy which is within the intended goal. Further analyses and papers on the HGP continue to occur. An initial rough draft of the human genome was available in June 2000 and by February 2001 a working draft had been completed and published followed by the final sequencing mapping of the human genome on April 14, 2003. Although this was reported to be 99% of the human genome with 99.99% accuracy a major quality assessment of the human genome sequence was published in May 27, 2004 indicating over 92% of sampling exceeded 99.99% accuracy which is within the intended goal. Further analyses and papers on the HGP continue to occur" (Wikipedia article on Human Genome Project, accessed 01-09-2013).